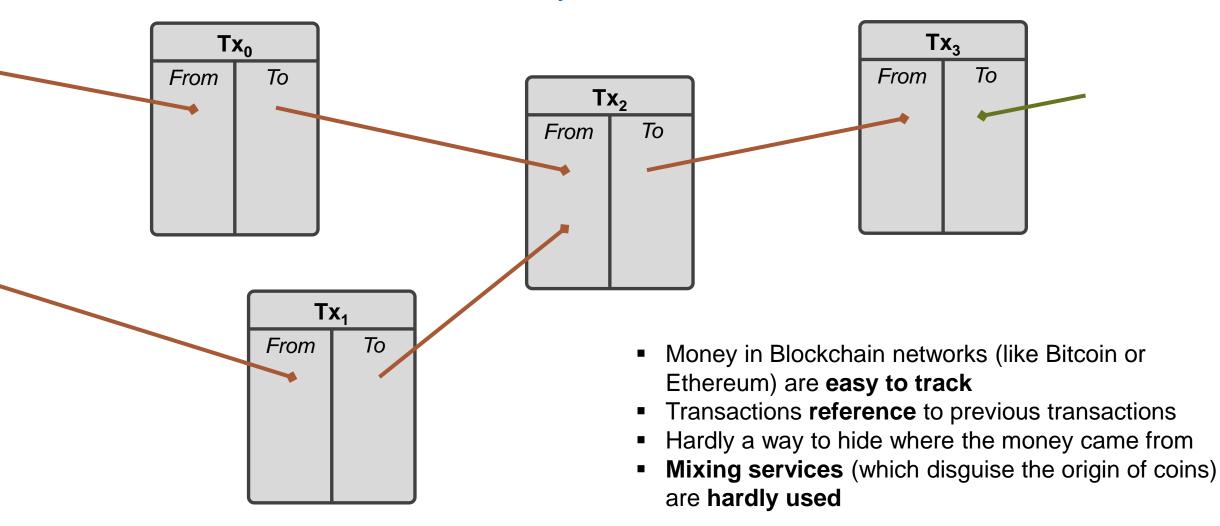


Research and Development in Blockchain

Ulrich Gallersdörfer, M.Sc. – 2018, Sebis-Day

sebis


Chair of Software Engineering for Business Information Systems (sebis) Faculty of Informatics Technische Universität München wwwmatthes.in.tum.de

- 1. Analysis of Cross-Blockchain Transactions
- 2. Design Patterns in Solidity
- 3. Current (and future) Research

Transactions in Blockchains are easy to track

→ Scam and theft still a dominant problem without a possibility to efficiently track the money

Coins are exchanged to other currencies

Why are we not able to efficiently track the money? \rightarrow Currencies are changed into other currencies.

Trading platforms are not used, as an exchange is time consuming and requires user registration. Instant Cryptocurrency Exchanges allow a **direct exchange** of two currencies.

1. Is it possible to **detect** a transaction for a instant cryptocurrency exchange?

2. Is it possible to **track the flow of money** across **different currencies**?

We trace cross-blockchain transactions

Findings Data usage Very high volume (200 Mio. / month) • Transaction data from two Blockchains High detection rate of exchange • transactions (92%) Exchange Rates based on prices, exchange fees & transaction fees Correct matching very hard due to • Many possible exchange pairs ٠ Exchange Duration based on Timestamps Over 30 cryptocurrencies Very small transaction amounts Known Exchange Addresses However, high volume tx traceable ٠

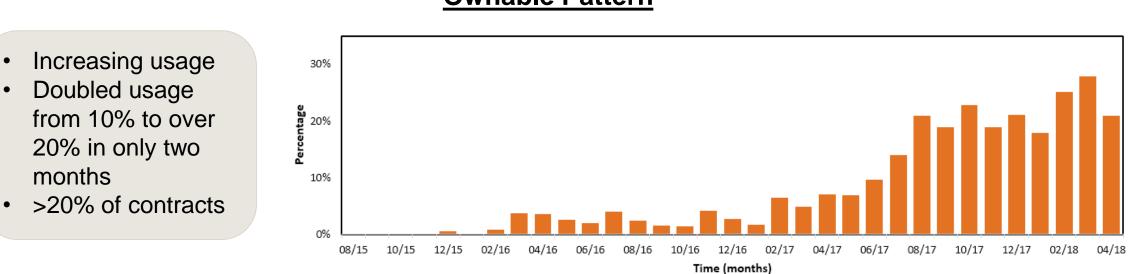
٠

•

٠

- 1. Analysis of Cross-Blockchain Transactions
- 2. Design Patterns in Solidity
- 3. Current (and future) Research

Smart Contract Software Engineering is hard



We collected 14 different patterns

1. Guard Check		
2. State Machine	Behavioral	On
3. Oracle	Donavioral	
4. Randomness		
5. Access Restriction / Ownable		
6. Check Effects Interactions		
7. Secure Ether Transfer	Security	
8. Pull over Push		
9. Emergency Stop		
10. Proxy Delegate	L la grada a bility	5
11. Eternal Storage	Upgradeability	• e ⁸
12. String Equality Comparison		
13. Tight Variable Packing	Economic	
14. Memory Array Building		

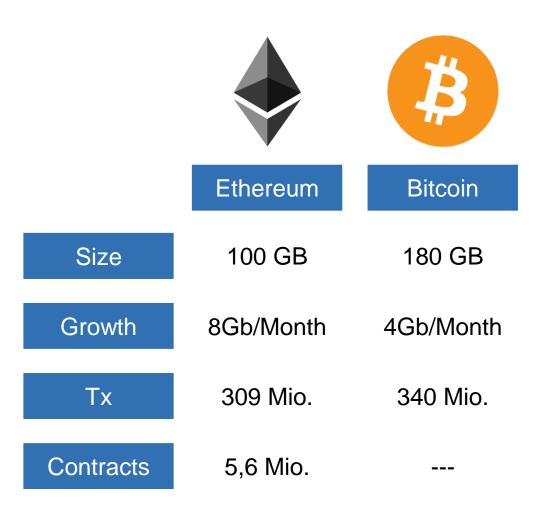
We measure the usage of these patterns

With bytecode analysis, we are able to measure common standards.

Ownable Pattern

Patterns are heavily used in Smart Contract development community!

- 1. Analysis of Cross-Blockchain Transactions
- 2. Design Patterns in Solidity
- 3. Current (and future) Research


Data Analytics in Blockchain

Public Blockchains offer rich data sets

➔ Data is highly diverse: Transaction Data, User accounts, Smart Contracts (95% Bytecode, 5% Source Code), Flow of money

These Data allows for various analytics

- → Usage of Software Patterns (current project)
- → Trends in Blockchain
- → Meta-services (Origin of Money, Taxes, ...)
- \rightarrow If data analytics is interesting for you, talk to me.

TLM sebis

M.Sc. **Ulrich Gallersdörfer** Wissenschaftlicher Mitarbeiter

Technische Universität München Faculty of Informatics Chair of Software Engineering for Business Information Systems

Boltzmannstraße 3 85748 Garching bei München

Tel +49.89.289.17137 Fax +49.89.289.17136

ulrich.gallersdoerfer@tum.de wwwmatthes.in.tum.de

